科研成果

2023

[ 83 ] Li, M., Yang, Y.*, Wang, H., Li, H., Wang, P., and Liao, H., Summertime ozone pollution in China affected by stratospheric quasi-biennial oscillation, Atmos. Chem. Phys., 23, 1533–1544, https://doi.org/10.5194/acp-23-1533-2023, 2023. [PDF]

[ 82 ] Li, H., Yang, Y.*, Jin, J., Wang, H., Li, K., Wang, P., and Liao, H., Climate-driven deterioration of future ozone pollution in Asia predicted by machine learning with multi-source data, Atmos. Chem. Phys., 23, 1131–1145, https://doi.org/10.5194/acp-23-1131-2023, 2023. [PDF]

[ 81 ] Wang, J., Liu, Y.*, Yang, Y.*, Wu, P., Yang, J., Liang, P., Song, C., Zhang, S., and Ding, Y., Impact of early winter North Atlantic Oscillation on the dramatic alternation of seesaw haze intensity between late winter months in the North China Plain, Atmos. Res., 281, 106483, https://doi.org/10.1016/j.atmosres.2022.106483, 2023. [PDF]

[ 80 ] Lian, L., Chen, S., Ma, J., Li, T., Yang, Y., Huang, T., Wang, Y., and Li, J., Population Aging Driven Slowdown in the Reduction of Economic Cost-Attributed to PM2.5 Pollution after 2013 in China, Environ. Sci. Technol., 57, 1237–1245, https://doi.org/10.1021/acs.est.2c05386, 2023. [PDF]

[ 79 ] Dai, H., Liao, H., Li, K., Yue, X., Yang, Y., Zhu, J., Jin, J., Li, B., and Jiang, X., Composited analyses of the chemical and physical characteristics of co-polluted days by ozone and PM2.5 over 2013–2020 in the Beijing–Tianjin–Hebei region, Atmos. Chem. Phys., 23, 23–39, https://doi.org/10.5194/acp-23-23-2023, 2023. [PDF]

[ 78 ] Chen, L., Liao, H., Zhu, J., Li, K., Bai, Y., Yue, X., Yang, Y., Hu, J., and Zhang, M., Increases in ozone-related mortality in China over 2013–2030 attributed to historical ozone deterioration and future population aging, Sci. Total Environ., 858,159972, https://doi.org/10.1016/j.scitotenv.2022.159972, 2023. [PDF]

[ 77 ] Li, Y., Li, B., Liao, H., Zhou, B.-B., Wei, J., Wang, Y., Zang, Y., Yang, Y., Liu, R., and Wang, X., Changes in PM2.5-related health burden in China's poverty and non-poverty areas during 2000–2020: A health inequality perspective, Sci. Total Environ., 861, 160517, https://doi.org/10.1016/j.scitotenv.2022.160517, 2023. [PDF]

2022

[ 76 ] Yang, Y.*, Ren, L., Wu, M., Wang, H.*, Song, F., Leung, L. R., Hao, X., Li, J., Chen, L., Li, H., Zeng, L., Zhou, Y., Wang, P., Liao, H., Wang, J., and Zhou, Z.-Q., Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China, Nat. Commun., 13, 959, https://doi.org/10.1038/s41467-022-28537-9, 2022. [PDF]

[ 75 ] Yang, Y.*, Zeng, L., Wang, H., Wang, P., and Liao, H., Dust pollution in China affected by different spatial and temporal types of El Niño, Atmos. Chem. Phys., 22, 14489–14502, https://doi.org/10.5194/acp-22-14489-2022, 2022. [PDF]

[ 74 ] Yang, Y.*, Li, M., Wang, H., Li, H., Wang, P., Li, K., Gao, M., and Liao, H., ENSO modulation of summertime tropospheric ozone over China, Environ. Res. Lett., https://doi.org/10.1088/1748-9326/ac54cd, 2022. [PDF]

[ 73 ] Li, H., Yang, Y.*, Wang, H., Wang, P., Yue, X., and Liao, H., Projected Aerosol Changes Driven by Emissions and Climate Change Using a Machine Learning Method, Environ. Sci. Technol., 56, 3884-3893, https://doi.org/10.1021/acs.est.1c04380, 2022. [PDF]

[ 72 ] Gao, J., Yang, Y.*, Wang, H., Wang, P., Li, H., Li, M., Ren, L., Yue, X., and Liao, H., Fast climate responses to emission reductions in aerosol and ozone precursors in China during 2013–2017, Atmos. Chem. Phys., 22, 7131–7142, https://doi.org/10.5194/acp-22-7131-2022, 2022. [PDF]

[ 71 ] Ren, L., Yang, Y.*, Wang, H., Wang, P., Yue, X., and Liao, H., Widespread wildfires over the western United States in 2020 linked to emissions reductions during COVID-19, Geophys. Res. Lett., 49, e2022GL099308, https://doi.org/10.1029/2022GL099308, 2022. [PDF]

[ 70 ] Wang, P., Yang, Y.*, Li, H., Chen, L., Dang, R., Xue, D., Li, B., Tang, J., Leung, L. R., and Liao, H., North China Plain as a hot spot of ozone pollution exacerbated by extreme high temperatures, Atmos. Chem. Phys., 22, 4705–4719, https://doi.org/10.5194/acp-22-4705-2022, 2022. [PDF]

[ 69 ] Zhou, Y., Yang, Y.*, Wang, H., Wang, J., Li, M., Li, H., Wang, P., Zhu, J., Li, K., and Liao, H., Summer ozone pollution in China affected by the intensity of Asian monsoon systems, Sci. Total Environ., 25, 157785, https://doi.org/10.1016/j.scitotenv.2022.157785, 2022. [PDF]

[ 68 ] Li, M., Yang, Y.*, Wang, P., Ji, D., and Liao, H., Impacts of strong El Niño on summertime near-surface ozone over China, Atmos. Oceanic Sci. Lett., 15, 100193, https://doi.org/10.1016/j.aosl.2022.100193, 2022. [PDF]

[ 67 ] Xie, B., Yang, Y.*, Wang, P., and Liao, H., Impacts of ENSO on wintertime PM2.5 pollution over China during 2014–2021, Atmos. Oceanic Sci. Lett., 15, 100189, https://doi.org/10.1016/j.aosl.2022.100189, 2022. [PDF]

[ 66 ] Li, J., Hao, X., Liao, H., Wang, Y., Cai, W., Li, K., Yue, X., Yang, Y., Chen, H., Mao, Y., Fu, Y., Chen, L., and Zhu, J.: Winter particulate pollution severity in North China driven by atmospheric teleconnections, Nat. Geosci., 15, 349–355, https://doi.org/10.1038/s41561-022-00933-2, 2022.  [PDF]

[ 65 ] Lin, J., Zhou, C., Chen, L., Huang, G., Lamarque, J.-F., Nie, J., Yang, J., Hu, K., Liu, P., Wang, J., Yang, X., Yang, Y., and Hu, Y., Sulfur emissions from consumption by developed and developing countries produce comparable climate impacts, Nat. Geosci., https://doi.org/10.1038/s41561-022-00898-2, 2022. [PDF]

[ 64 ] Chen, D., Liao, H., Yang, Y., Chen, L., Zhao, D., and Ding, D., Simulated impacts of vertical distributions of black carbon aerosol on meteorology and PM2.5 concentrations in Beijing during severe haze events, Atmos. Chem. Phys., 22, 1825–1844, https://doi.org/10.5194/acp-22-1825-2022, 2022. [PDF]

[ 63 ] Tian, C., Yue, X., Zhu, J., Liao, H., Yang, Y., Lei, Y., Zhou, X., Zhou, H., Ma, Y., and Cao, Y., Fire–climate interactions through the aerosol radiative effect in a global chemistry–climate–vegetation model, Atmos. Chem. Phys., 22, 12353–12366, https://doi.org/10.5194/acp-22-12353-2022, 2022. [PDF]

[ 62 ] Wei, J., Lu, B., Song, Y., Jin, Q., Yang, Y., Chen, Q., and Chen, H., Impact of aerosol radiative effect on the diurnal cycle of summer precipitation over North China: Distinct results from simulations with parameterized versus explicit convection, Geophys. Res. Lett., 49, e2022GL098795, https://doi.org/10.1029/2022GL098795, 2022. [PDF]

[ 61 ] Qian, J., Liao, H., Yang, Y., Li, K., Chen, L., and Zhu, J., Meteorological influences on daily variation and trend of summertime surface ozone over years of 2015–2020: Quantification for cities in the Yangtze River Delta, Sci. Total Environ., 835, 155107, https://doi.org/10.1016/j.scitotenv.2022.155107, 2022. [PDF]

[ 60 ] Gu, X., Li, B., Sun, C., Liao, H., Zhao, Y., and Yang, Y., An improved hourly-resolved NOx emission inventory for power plants based on continuous emission monitoring system (CEMS) database: A case in Jiangsu, China, J. Clean. Prod., 369, 1, https://doi.org/10.1016/j.jclepro.2022.133176, 2022. [PDF]

[ 59 ] Brown, H., Wang, H., Flanner, M., Liu, X., Singh, B., Zhang, R., Yang, Y., and Wu, M., Brown carbon fuel and emission source attributions to global snow darkening effect, J. Adv. Model Earth Sy., 14, e2021MS002768, https://doi.org/10.1029/2021MS002768, 2022. [PDF]

[ 58 ] Wang, J., Liu, Y., Ding Y., Yang, Y., Xu, Y., Li, Q., Zhang Y., Gao M., Yang, J., Wu, Q., Li, C., and Li, M., Future changes in the meteorological potential for winter haze over Beijing during periods of peak carbon emissions and carbon neutrality in China projected by Coupled Model Intercomparison Project Phase 6 models. Int. J. Climatol., 42, 2065-2082, https://doi.org/10.1002/joc.7352, 2022. [PDF]

[ 57 ] Wang, T., Li, B., Huang, T., Jiang, W., Yang, Y., and Liao, H., Long-term spatiotemporal variation and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons (PAHs) in the Yangtze River Delta, China. Environ. Geochem. Health, https://doi.org/10.1007/s10653-022-01271-3, 2022. [PDF]

2021

[ 56 ] Yang, Y.*, Zhou, Y., Li, K., Wang, H., Ren, L., Zeng, L., Li, H., Wang, P., Li., B., and Liao, H., Atmospheric circulation patterns conducive to severe haze in eastern China have shifted under climate change, Geophys. Res. Lett., 48, e2021GL095011, https://doi.org/10.1029/2021GL095011, 2021. [PDF]

[ 55 ] Ren, L., Yang, Y.*, Wang, H., Wang, P., Chen, L., Zhu, J., and Liao, H., Aerosol transport pathways and source attribution in China during the COVID-19 outbreak, Atmos. Chem. Phys., 21, 15431–15445, https://doi.org/10.5194/acp-21-15431-2021, 2021. [PDF]

[ 54 ] Zeng, L., Yang, Y.*, Wang, H., Wang, J., Li, J., Ren, L., Li, H., Zhou, Y., Wang, P., and Liao, H., Intensified modulation of winter aerosol pollution in China by El Niño with short duration, Atmos. Chem. Phys., 21, 10745–10761, https://doi.org/10.5194/acp-21-10745-2021, 2021. [PDF]

[ 53 ] Li, H., Yang, Y.*, Wang, H., Li, B., Wang, P., Li, J., and Liao, H., Constructing a spatiotemporally coherent long-term PM2.5 concentration dataset over China during 1980–2019 using a machine learning approach, Sci. Total Environ., 765, 144263, https://doi.org/10.1016/j.scitotenv.2020.144263, 2021. [PDF]

[ 52 ] Wang, P., Yang, Y.*, Tang, J.*, Leung, L. R., and Liao, H., Intensified Humid Heat Events under Global Warming, Geophys. Res. Lett., 48, e2020GL091462, https://doi.org/10.1029/2020GL091462, 2021. [PDF]

[ 51 ] Chen, D., Liao, H.*, Yang, Y.*, Chen, L., and Wang, H., Simulated aging processes of black carbon and its impact during a severe winter haze event in the Beijing-Tianjin-Hebei region, Sci. Total Environ., 755, 142712, https://doi.org/10.1016/j.scitotenv.2020.142712, 2021. [PDF]

[ 50 ] Gao, M., Yang, Y., Liao, H., Zhu, B., Zhang, Y., Liu, Z., Lu, X., Wang, C., Zhou, Q., Wang, Y., Zhang, Q., Carmichael, G. R., and Hu, J., Reduced light absorption of black carbon (BC) and its influence on BC-boundary-layer interactions during “APEC Blue”, Atmos. Chem. Phys., 21, 11405–11421, https://doi.org/10.5194/acp-21-11405-2021, 2021. [PDF]

[ 49 ] Li, B., Chen, L., Shen, W., Jin, J., Wang, T., Wang, P., Yang, Y., and Liao, H., Improved gridded ammonia emission inventory in China, Atmos. Chem. Phys., 21, 15883–15900, https://doi.org/10.5194/acp-21-15883-2021, 2021. [PDF]

[ 48 ] Cao, Y., Yue, X., Lei, Y., Zhou, H., Liao, H., Song, Y., Bai, J., Yang, Y., Chen, L., Zhu, J., Ma, Y., and Tian, C., Identifying the drivers of modeling uncertainties in isoprene emissions: Schemes versus meteorological forcings, J. Geophys. Res. Atmos., 126, e2020JD034242, https://doi.org/10.1029/2020JD034242, 2021. [PDF]

[ 47 ] Cao, Y., Yue, X., Liao, H., Yang, Y., Zhu, J., Chen, L., Tian, C., Lei, Y., Zhou, H., and Ma, Y., Ensemble projection of global isoprene emissions by the end of 21st century using CMIP6 models, Atmos. Environ., 267, 118766, https://doi.org/10.1016/j.atmosenv.2021.118766, 2021. [PDF]

[ 46 ] Lei, Y., Yue, X., Liao, H., Zhang, L., Yang, Y., Zhou, H., Tian, C., Gong, C., Ma, Y., Gao, L., and Cao, Y., Indirect contributions of global fires to surface ozone through ozone–vegetation feedback, Atmos. Chem. Phys., 21, 11531–11543, https://doi.org/10.5194/acp-21-11531-2021, 2021. [PDF]

[ 45 ] Jones, C. D., Hickman, J. E., Rumbold, S. T., Walton, J., Lamboll, R. D., ..., Yang, Y. et al., The climate response to emissions reductions due to COVID-19: Initial results from CovidMIP, Geophys. Res. Lett., 48, e2020GL091883, https://doi.org/10.1029/2020GL091883, 2021. [PDF]

[ 44 ] Zhu, J., Chen, L., Liao, H., Yang, H., Yang, Y., and Yue, X., Enhanced PM2.5 decreases and O3 increases in China during COVID-19 lockdown by aerosol-radiation feedback, Geophys. Res. Lett., 48, e2020GL090260, https://doi.org/10.1029/2020GL090260, 2021. [PDF]

[ 43 ] Wang, M., Xu, B., Wang, H., Zhang, R., Yang, Y., Gao, S., Tang, X., and Wang, N., Black carbon deposited in Hariqin Glacier of the Central Tibetan Plateau record changes in the emission from Eurasia, Environ. Pollut., 273, 115778, https://doi.org/10.1016/j.envpol.2020.115778, 2021. [PDF]

[ 42 ] Dai, H., Zhu, J., Liao, H., Li, J., Liang, M., Yang, Y., and Yue, X., Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over 2013–2019: Spatiotemporal distribution and meteorological conditions, Atmos. Res., 249, 105363, https://doi.org/10.1016/j.atmosres.2020.105363, 2021. [PDF]

[ 41 ] Corral, A. F., Braun, R., Cairns, B., Gorooh, V. A., Liu, H., Ma, L., Mardi, A., Painemal, D., Stamnes, S., van Diedenhoven, B., Wang, H., Yang, Y., Zhang, B., and Sorooshian, A., An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast – Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry, J. Geophys. Res. Atmos., 126, e2020JD032592, https://doi.org/10.1029/2020JD032592, 2021. [PDF]

2020

[ 40 ] Yang, Y.*, Ren, L., Li, H., Wang, H., Wang, P., Chen, L., Yue, X., and Hong, L., Fast climate responses to aerosol emission reductions during the COVID-19 pandemic, Geophys. Res. Lett., 47, e2020GL089788, https://doi.org/10.1029/2020GL089788, 2020. [PDF]

[ 39 ] Yang, Y., Lou, S., Wang, H., Wang, P., and Liao, H., Trends and source apportionment of aerosols in Europe during 1980–2018, Atmos. Chem. Phys., 20, 2579–2590, https://doi.org/10.5194/acp-20-2579-2020, 2020. [PDF]

[ 38 ] Ren, L., Yang, Y.*, Wang, H., Zhang, R., Wang, P., and Liao, H., Source attribution of Arctic black carbon and sulfate aerosols and associated Arctic surface warming during 1980–2018, Atmos. Chem. Phys., 20, 9067–9085, https://doi.org/10.5194/acp-20-9067-2020, 2020. [PDF]

[ 37 ] Zhu, J., Chen, L., Liao, H., Yang, H., Yang, Y., and Yue, X., Enhanced PM2.5 decreases and O3 increases in China during COVID-19 Lockdown by aerosol-radiation feedback, Geophys. Res. Lett., 47, e2020GL090260, https://doi.org/10.1029/2020GL090260, 2020. [PDF]

[ 36 ] Chen, L., Zhu, J., Liao, H., Yang, Y., and Yue, X., Meteorological influences on PM2.5 and O3 trends and associated health burden since China's clean air actions, Sci. Total Environ., 744, 140837, https://doi.org/10.1016/j.scitotenv.2020.140837, 2020. [PDF]

[ 35 ] Gong, C., Liao, H., Zhang, L., Yue, X., Dang, R., and Yang, Y., Persistent ozone pollution episodes in North China exacerbated by regional transport, Environ. Pollut., 265, 115056, https://doi.org/10.1016/j.envpol.2020.115056, 2020. [PDF]

[ 34 ] Dong, Y., Li, J., Guo, J., Jiang, Z., Chu, Y., Chang, L., Yang, Y., and Liao, H., The impact of synoptic patterns on summertime ozone pollution in the North China Plain, Sci. Total Environ., 735, 139559, https://doi.org/10.1016/j.scitotenv.2020.139559, 2020. [PDF]

[ 33 ] Yu, H., Yang, Y., Wang, H., Tan, Q., Chin, M., Levy, R. C., Remer, L. A., Smith, S. J., Yuan, T., and Shi, Y., Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017, Atmos. Chem. Phys., 20, 139–161, https://doi.org/10.5194/acp-20-139-2020, 2020. [PDF]

[ 32 ] Wang, H., Easter, R., Zhang, R., Ma, P.-L., Singh, B., Zhang, K., Ganguly, D., ..., Yang, Y. et al., Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing, J. Adv. Model Earth Sy., 12, e2019MS001851, https://doi.org/10.1029/2019MS001851, 2020. [PDF]

2019

[ 31 ] Yang, Y., Smith, S. J., Wang, H., Lou, S., and Rasch, P. J., Impact of anthropogenic emission injection height uncertainty on global sulfur dioxide and aerosol distribution, J. Geophys. Res. Atmos., 124, 4812-4826, https://doi.org/10.1029/2018JD030001, 2019. [PDF]

[ 30 ] Yang, Y., Smith, S. J., Wang, H., Mills, C. M., and Rasch, P. J., Variability, timescales, and nonlinearity in climate responses to black carbon emissions, Atmos. Chem. Phys., 19, 2405-2420, https://doi.org/10.5194/acp-19-2405-2019, 2019. [PDF]

[ 29 ] Lou, S., Yang, Y.*, Wang, H., Lu, J., Smith, S. J., Liu, F., and Rasch, P. J., Black carbon increases frequency of extreme ENSO events, J. Climate, 32, 8323–8333, https://doi.org/10.1175/JCLI-D-19-0549.1, 2019. [PDF]

[ 28 ] Lou, S., Yang, Y.*, Wang, H., Smith, S. J., Qian, Y., and Rasch, P. J., Black carbon amplifies haze over the North China Plain by weakening the East Asian winter monsoon, Geophys. Res. Lett., 46, 452–460, https://doi.org/10.1029/2018GL080941, 2019. (ESI Highly Cited Paper) [PDF]

[ 27 ] Fu, Y., Liao, H., and Yang, Y., Interannual and Decadal Changes in Tropospheric Ozone in China and the Associated Chemistry-Climate Interactions: A Review, Adv. Atmos. Sci., 46, 452–460, https://doi.org/10.1007/s00376-019-8216-9, 2019. [PDF]

[ 26 ] Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J.‐C., ..., Yang, Y. et al., The DOE E3SM coupled model version 1: Description and results at high resolution, J. Adv. Model Earth Sy., 11, 4095–4146, https://doi.org/10.1029/2019MS001870, 2019. [PDF]

[ 25 ] Fanourgakis, G. S., Kanakidou, M., Nenes, A., Bauer, S. E., Bergman, T., Carslaw, K. S., ..., Yang, Y. et al., Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation, Atmos. Chem. Phys., 19, 8591–8617, https://doi.org/10.5194/acp-19-8591-2019, 2019 [PDF]

[ 24 ] Golaz, J.‐C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., ..., Yang, Y. et al., The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution, J. Adv. Model Earth Sy., 11, 2089–2129, https://doi.org/10.1029/2018MS001603, 2019 [PDF]

[ 23 ] Rasch, P. J., Xie, S., Ma, P.‐L., Lin, W., Wang, H., Tang, Q., Burrows, S. M., ..., Yang, Y. et al., An Overview of the Atmospheric Component of the Energy Exascale Earth System Model, J. Adv. Model Earth Sy., 11, 2377–2411, https://doi.org/10.1029/2019MS001629, 2019 [PDF]

2018

[ 22 ] Yang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Yu, H., Li, C., and Rasch, P. J., Source apportionments of aerosols and their direct radiative forcing and long-term trends over continental United States, ‎ Earth's Future, 6, 793–808, https://doi.org/10.1029/2018EF000859, 2018. [PDF]

[ 21 ] Yang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Qian, Y., Ma, P.-L., and Rasch, P. J., Recent intensification of winter haze in China linked to foreign emissions and meteorology, Sci. Rep., 8, 2107, https://doi.org/10.1038/s41598-018-20437-7, 2018. (Reported by PNNL Highlight, ESI Highly Cited Paper) [PDF]

[ 20 ] Yang, Y., Wang, H., Smith, S. J., Easter, R. C., and Rasch, P. J., Sulfate aerosol in the Arctic: Source attribution and radiative forcing, J. Geophys. Res. Atmos., 123, 1899–1918, https://doi.org/10.1002/2017JD027298, 2018. (Figure Published on Journal Cover; Reported by PNNL Highlight) [PDF]

[ 19 ] Zhang, R., Wang, H., Fu, Q., Pendergrass, A. G., Wang, M., Yang, Y., Ma, P.-L., and Rasch, P. J., Local radiative feedbacks over the Arctic based on observed short‐term climate variations, Geophys. Res. Lett., 45, https://doi.org/10.1029/2018GL077852, 2018. [PDF]

[ 18 ] Li, K., Liao, H., Cai, W., and Yang, Y., Attribution of anthropogenic influence on atmospheric patterns conducive to recent most severe haze over eastern China, Geophys. Res. Lett., 45, 2072–2081, https://doi.org/10.1002/2017GL076570, 2018. [PDF]

2017

[ 17 ] Yang, Y., Russell, L. M., Lou, S., Liao, H., Guo, J., Liu, Y., Singh, B., and Ghan, S. J., Dust-wind interactions can intensify aerosol pollution over eastern China, Nat. Commun., 8, 15333, https://doi.org/10.1038/ncomms15333, 2017. (Reported by BBC, the Guardian, ScienceDaily etc., ASGC Paper of the Year, ESI Highly Cited Paper) [PDF]

[ 16 ] Yang, Y., Wang, H., Smith, S. J., Easter, R., Ma, P.-L., Qian, Y., Yu, H., Li, C., and Rasch, P. J., Global source attribution of sulfate concentration and direct and indirect radiative forcing, Atmos. Chem. Phys., 17, 8903–8922, https://doi.org/10.5194/acp-17-8903-2017, 2017. [PDF]

[ 15 ] Yang, Y., Wang, H., Smith, S. J., Ma, P.-L., and Rasch, P. J., Source attribution of black carbon and its direct radiative forcing in China, Atmos. Chem. Phys., 17, 4319–4336, https://doi.org/10.5194/acp-17-4319-2017, 2017. (Reported by BAMS, Phys.org, PNNL Highlight) [PDF]

[ 14 ] Lou, S., Russell, L. M., Yang, Y. Liu, Y., Singh, B., and Ghan, S. J., Impacts of interactive dust and its direct radiative forcing on interannual variations of temperature and precipitation in winter over East Asia, J. Geophys. Res. Atmos., 122, 8761–8780, https://doi.org/10.1002/ 2017JD027267, 2017. [PDF]

[ 13 ] Zhu, J., Liao, H., Mao, Y., Yang, Y., and Jiang, H., Interannual variation, decadal trend, and future change in ozone outflow from East Asia, Atmos. Chem. Phys., 17, 3729–3747, https://doi.org/10.5194/acp-17-3729-2017, 2017. [PDF]

[ 12 ] Feng, J., Li, J., Zhu, J., Liao, H., and Yang, Y., Simulated contrasting influences of two La Niña Modoki events on aerosol concentrations over eastern China, J. Geophys. Res. Atmos., 122, 2734–2749, https://doi.org/10.1002/2016JD026175, 2017. [PDF]

2016

[ 11 ] Yang, Y., Liao, H., and Lou, S., Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions, J. Geophys. Res. Atmos., 121, 13,050–13,065, https://doi.org/10.1002/2016JD025136, 2016. [PDF]

[ 10 ] Yang, Y., Russell, L. M., Lou, S., Lamjiri, M. A., Liu, Y., Singh, B., and Ghan, S. J., Changes in Sea Salt Emissions Enhance ENSO Variability, J. Climate, 29, 8575–8588, https://doi.org/10.1175/JCLI-D-16-0237.1, 2016. [PDF]

[ 9 ] Yang, Y., Russell, L. M., Xu, L., Lou, S., Lamjiri, M. A., Somerville, R. C. J., Miller, A. J., Cayan, D. R., DeFlorio, M. J., Ghan, S. J., Liu, Y., Singh, B., Wang, H., Yoon, J.-H., and Rasch, P. J., Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations, J. Geophys. Res. Atmos., 121, 6321–6335, https://doi.org/10.1002/2015JD024503, 2016. [PDF]

[ 8 ] Yang, Y., Russell, L. M., Lou, S., Liu, Y., Singh, B., and Ghan, S. J., Rain-aerosol relationships influenced by wind speed, Geophys. Res. Lett., 43, 2267–2274, https://doi.org/10.1002/2016GL067770, 2016. [PDF]

[ 7 ] Xu, L., Cameron-Smith, P., Russell, L. M., Ghan, S. J., Liu, Y., Elliott, S., Yang, Y., Lou, S., Lamjiri, M. A., and Manizza, M., DMS role in ENSO cycle in the tropics, J. Geophys. Res. Atmos., 121, 13,537–13,558, https://doi.org/10.1002/2016JD025333, 2016. [PDF]

[ 6 ] Lou, S., Russell, L. M., Yang, Y., Xu, L., Lamjiri, M. A., DeFlorio, M. J., Miller, A. J., Ghan, S. J., Liu, Y., and Singh, B., Impacts of the East Asian Monsoon on springtime dust concentrations over China, J. Geophys. Res. Atmos., 121, 8137–8152, https://doi.org/10.1002/2016JD024758, 2016. [PDF]

2015

[ 5 ] Yang, Y., Liao, H., and Lou, S., Decadal trend and interannual variation of outflow of aerosols from East Asia: Roles of variations in meteorological parameters and emissions, Atmos. Environ., 100,141–153, https://doi.org/10.1016/j.atmosenv.2014.11.004, 2015. [PDF]

[ 4 ] Lou, S., Liao, H., Yang, Y., and Mu, Q., Simulation of the interannual variations of tropospheric ozone over China: Roles of variations in meteorological parameters and anthropogenic emissions, Atmos. Environ., 122, 839–851, https://doi.org/10.1016/j.atmosenv.2015.08.081, 2015. [PDF]

[ 3 ] Liao, H., Chang, W., and Yang, Y., Climatic effects of air pollutants over China: A review, Adv. Atmos. Sci., 32, 115–139, https://doi.org/10.1007/s00376-014-0013-x, 2015. [PDF]

2014

[ 2 ] Yang, Y., Liao, H., and Li, J., Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China, Atmos. Chem. Phys., 14, 6867–6880, https://doi.org/10.5194/acp-14-6867-2014, 2014. [PDF]

[ 1 ] Yang, Y., Liao, H., and Lou, S., Simulated impacts of sulfate and nitrate aerosol formation on surface-layer ozone concentrations in China, Atmos. Oceanic Sci. Lett., 7, 441–446, https://doi.org/10.3878/j.issn.1674-2834.14.0033, 2014. [PDF]