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Abstract We compare various radiative feedbacks over the Arctic (60–90°N) estimated from short-term
climate variations occurring in reanalysis, satellite, and global climate model data sets using the combined
Kernel-Gregory approach. The lapse rate and surface albedo feedbacks are positive, and their magnitudes are
comparable. Relative to the tropics (30°S–30°N), the lapse rate feedback is the largest contributor to Arctic
amplification among all feedbacks, followed by surface albedo feedback and Planck feedback deviation from
its global mean. Both shortwave and longwave water vapor feedbacks are positive, leading to a significant
positive net water vapor feedback over the Arctic. The net cloud feedback has large uncertainties including
its sign, which strongly depends on the data used for all-sky and clear-sky radiative fluxes at the top of the
atmosphere, the time periods considered, and the methods used to estimate the cloud feedback.

Plain Language Summary The Arctic has warmed dramatically in recent decades, with
temperature increasing at a rate of about twice as fast as the global mean value. This phenomenon,
commonly known as Arctic amplification, has been found in the observed and modeled climate changes.
Several feedback mechanisms have been shown to contribute to Arctic amplification, but their relative
importance is still very uncertain. Here we use a variety of reanalysis and satellite data sets to quantify the
Arctic local feedbacks based on short-term climate variations, evaluate the feedbacks simulated in a global
climatemodel, diagnose the impact of data set choices on the feedback estimates, and identify the sources of
main uncertainties. The most disagreement is found in the estimate of cloud feedback.

1. Introduction

The concept of climate feedback offers a powerful framework to characterize the response of the climate
system to an external radiative forcing (Charney et al., 1979; Hansen et al., 1984). The response to a positive
net radiative imbalance (ΔR) at the top of the atmosphere (TOA) caused by radiative forcing (ΔQ) leads to a
surface warming (ΔTs) as described by the formula ΔR = ΔQ + λΔTs, where λ is the net climate feedback
parameter (e.g., Bony et al., 2006). Feedbacks are usually given as the first-order terms in a Taylor series

expansion through the equation λ ¼ ∂R=∂Ts ¼
P ∂R

∂x
∂x
∂Ts ¼

P
λx , where x denotes temperature, water vapor

(WV), surface albedo, or clouds (e.g., Shell et al., 2008). The temperature feedback can be further separated
into the Planck feedback (due to vertically uniform temperature change) and the lapse rate (LR) feedback
(due to departures from surface temperature change at each vertical level). Climate feedbacks play an
important role in determining the climate sensitivity, defined as the equilibrium temperature change in
response to the radiative forcing from a doubling of atmospheric CO2 concentration, which has a large
spread among global climate models (Intergovernmental Panel on Climate Change (IPCC), 2013).

The Arctic has warmedmore than twice the global mean since the mid-1950s and, in particular, more than six
times the global mean since the late 1990s (Huang et al., 2017). This is a phenomenon commonly known as
Arctic amplification (AA), which has been found in the observed and modeled climate changes (IPCC, 2013).
Several feedbacks such as albedo feedback (Manabe & Wetherald, 1975), temperature feedback (Pithan &
Mauritsen, 2014), and cloud feedback (Vavrus, 2004) have been reported to contribute to AA. The surface
longwave emissivity and associated feedbacks are also found to have discernable impact on the outgoing
longwave radiation and surface temperature in the Arctic (Feldman et al., 2014; Huang et al., 2018). There
are, however, uncertainties and disagreement about the role of different feedbacks. The albedo feedback
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has often been considered as the main contributor (e.g., Screen & Simmonds, 2010; Taylor et al., 2013).
However, Winton (2006) reported that it is not a dominating factor in the simulated AA, and AA still exists
in a coupled climate model with locked albedo (Graversen &Wang, 2009). Pithan and Mauritsen (2014) found
that AA is dominated by temperature feedback, while albedo feedback plays a less important role based on
preindustrial control and 4×CO2 experiments from the CMIP5 (Coupled Model Intercomparison Project
phase 5; Taylor et al., 2012). Ideally, the magnitude of feedbacks would be estimated from long-term
observations covering decades or even centuries, but there are no such long-term observational records,
especially for atmospheric WV, temperature, and clouds. However, the relatively short observational data
can still be used to constrain modeled feedback estimates (e.g., Dessler, 2010, 2013). But systematic estimate
of feedbacks based on observed short-term climate variations over the Arctic has received relatively little
attention, particularly from a local perspective (Po-Chedley et al., 2018; Roe et al., 2015).

Here we use reanalysis products, satellite data, and global climate model experiments to (i) estimate the
magnitude of radiative feedbacks over the Arctic (60–90°N) based on short-term climate variations,
(ii) evaluate the modeled feedbacks with respect to observations at the TOA, and (iii) diagnose the impact
of data set choices on the feedback estimates.

2. Methodology
2.1. Model and Data

The Community Atmosphere Model version 5 (CAM5; Neale et al., 2010) is configured in nudging mode (Ma
et al., 2013), where the model wind fields are nudged to agree with MERRA (Modern Era Retrospective-
Analysis for Research and Applications) reanalysis products (Rienecker et al., 2011). While other meteorologi-
cal fields are allowed to evolve freely according to model physics, the wind nudging is applied to CAM5 to
ensure that the large-scale circulation patterns can be accurately captured. The latter is important for the
transport of heat, moisture, and aerosols to the Arctic (e.g., Ma et al., 2013). Sea surface temperatures and
sea ice concentrations are prescribed with time-varying observations. The model is run with a horizontal grid
spacing of 1.9 × 2.5° and 30 vertical layers. The simulation covers the period from 1979 to 2014. Monthly
mean anthropogenic and open biomass burning emissions (available up to 2014) from the recently released
data sets for phase 6 of CMIP are used here (Yang et al., 2017). A set of model improvements in the represen-
tation of aerosol-cloud microphysical processes and a four-mode version of the Modal Aerosol Module are
included to better characterize the vertical distribution of aerosols and their transport to the Arctic (Liu
et al., 2016; Wang et al., 2013, 2014).

The ERA-Interim reanalysis provided by ECMWF (European Centre for Medium-Range Weather Forecasts)
(Dee et al., 2011), the Japanese 55-year reanalysis (JRA-55) provided by the Japan Meteorological Agency
(Kobayashi et al., 2015), and the MERRA and MERRA-2 (version 2; Bosilovich & Koster, 2015) reanalysis pro-
vided by National Aeronautics and Space Administration (NASA) are used in this study. The NASA Clouds
and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) products are also used
(CERES Science Team, 2017). The latest EBAF-TOA Ed4.0 (version 4.0) products cover the period from
March 2000 to September 2017, which have many improvements with respect to the previous version (ver-
sion 2.8, Loeb et al., 2009) including the use of advanced and more consistent input data, instrument calibra-
tion, and retrieval of cloud properties (Loeb et al., 2018).

2.2. The Local Radiative Feedback Framework

The net radiative energy budget at the TOA, R, is positive when the Earth-atmosphere system gains energy.
For global mean, we always have R = 0 if the system is at equilibrium. When the systemmoves away from the
equilibrium in response to a radiative forcing ΔQ, the change in R can be related to ΔQ and surface tempera-
ture change ΔTs in a form

ΔR ¼ ΔQþ λΔTs;

where λ is the net climate feedback parameter. When the system reaches a new equilibrium, ΔR becomes 0,
and thus

ΔTs ¼ �ΔQ=λ:
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In considering any regional system (e.g., the Arctic), we define H as the horizontal heat flux convergence to
the system. At equilibrium we always have R + H = 0. When the system moves away from the equilibrium
in response to a radiative forcing ΔQ, we also have

ΔR ¼ ΔQþ λΔTs:

When the regional system reaches a new local equilibrium, ΔR + ΔH = 0, where ΔH is the change in H, and
thus, ΔR = � ΔH. We therefore have

ΔTs ¼ � ΔQþ ΔHð Þ=λ:

The λ above can be separated into Planck feedback (λ0) and feedbacks (λx) due to changes in the LR, surface
albedo, WV, and clouds so that λ = λ0 +

P
λx (e.g., Cai & Lu, 2007; Crook et al., 2011; Feldl et al., 2017; Goosse

et al., 2018; Pithan & Mauritsen, 2014; Rose et al., 2014). The λ must be negative for a stable climate system.

2.3. Combined Kernel-Gregory Method

Climate variables used in the feedback calculation include absorbed shortwave (SW), longwave radiation
(LW), net radiation (NET = SW + LW) at the TOA, surface albedo (α), temperature profile (T), WV profile (q),
and surface air temperature (SAT). Albedo α is calculated as the ratio of upward to downward shortwave
fluxes at the surface. Monthly anomalies (denoted by Δ) of each climate variable are calculated from the cor-
responding monthly time series by subtracting its respective monthly mean climatology for each grid, level
(for variables including a vertical dimension), and month. In the calculation of WV feedback, the moisture
change is associated with both vertically uniform warming and the deviations from vertically uniform warm-
ing with fixed relative humidity.

Total SW, LW, and NET feedbacks are calculated using the regression-based Gregory method (Gregory et al.,
2004) from a local perspective (Feldl & Roe, 2013). The area average of ΔSW, ΔLW, ΔNET, and ΔSAT over the
Arctic is computed first, and then a 12-month running mean is applied to the time series of these anomalies,
following Hwang et al. (2017), to retain radiative feedback processes with timescales spanning longer than a
month. After that, the TOA flux anomalies are regressed onto the SAT anomalies to obtain the linear regres-
sion coefficient. According to the definition ΔR = ΔQ + λΔTs, we need to further deduct the ΔQ/ΔTs based on
this regression coefficient to obtain the total feedbacks, where the ΔQ/ΔTs is calculated from relevant data in
Pendergrass et al. (2018) and shown in the Table S1.

Individual feedback components of α, T, and q are calculated using the combined Kernel-Gregory method
(Soden & Held, 2006) in the following steps.

Step 1 Anomalies (Δx, where x is α, T, or q) are multiplied by the respective radiative kernel (Kx = ∂R/∂x) at
each grid, level (for T and q) and month to produce the associated all-sky TOA radiative flux anoma-
lies (ΔRx = KxΔx) with the spatial distribution preserved. The ΔT is set to ΔSAT at each vertical level for
the Planck feedback calculation, and ΔT is the anomalous departure of temperature at each level
from SAT in the calculation of LR feedback.

Step 2 ΔRx of T and q at each vertical level are summed to produce the cumulative radiative response at the
TOA (Dalton & Shell, 2013). For the Planck feedback calculation, this integration includes the surface
as well.

Step 3 The area-average ΔRx of α, T, and q is calculated over the Arctic and then a 12-month running mean
is applied.

Step 4 The TOA flux anomalies are regressed onto the SAT anomalies to obtain feedbacks (i.e., the slope of
the linear least squares fit).

Cloud feedback is calculated with two different methods. One is called the residual method (Soden & Held,
2006), in which the feedback is calculated as follows. First, ΔRx of α, T, and q is subtracted from the TOA
all-sky flux anomalies (ΔRall � sky) to produce cloud forcing anomalies (ΔRcloud = ΔRall � sky �

P
ΔRx) at each

grid and month. Next, the area average of ΔRcloud over the Arctic is calculated and then a 12-month running
mean is applied. Finally, the monthly cloud forcing anomalies are regressed onto the SAT anomalies to obtain
the linear regression coefficient. As in the total feedback calculation, we also need to further deduct the ΔQ/Δ
Ts based on this regression coefficient to obtain the cloud feedback (residual).
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The other method for cloud feedback calculation is referred to as the adjustment method (Soden et al., 2008).
First, the cloud radiative forcing (CRF) anomalies are calculated as the change in difference between the all-
sky and the clear-sky TOA flux, i.e., ΔCRF = Δ(Rall � sky� Rclear � sky), at each grid and month. The ΔCRF is then
adjusted to account for environmental masking from ΔRx of α, T, and q, yielding ΔRcloud ¼ ΔCRFþP

ΔR0x � ΔRx
� �

, where ΔR0x represents the clear-sky ΔRx (using the clear-sky kernels). Following similar steps

in the residual method, the area average of ΔRcloud over the Arctic and monthly anomalies are calculated
to obtain the linear regression coefficient. Finally, we need to further add the radiative forcing difference
under clear-sky (ΔQ0) and all-sky (ΔQ) conditions scaled by the surface temperature change (i.e.,
Δ(Q0 � Q)/ΔTs) to obtain the cloud feedback (adjustment). Here the Δ(Q0 � Q)/ΔTs due to greenhouse gases
and aerosols is calculated from relevant data in Pendergrass et al. (2018) and shown in Table S2.

In the calculations above we have to use a substitute for the effect of radiative forcing due to a lack of asso-
ciated temporal information in the available data sets, which is a common issue for calculating short-term
feedbacks (Koumoutsaris, 2013). Here the monthly radiative kernels are derived from the large-ensemble
simulations of CAM5 (Pendergrass et al., 2018). Note that positive TOA fluxes are defined as downwelling.
Thus, positive feedback values mean energy gain in the climate system. Hereafter, unless otherwise specified,
the uncertainty of feedback estimates is provided as the 95% confidence interval of the linear regression fit.

3. Results
3.1. Arctic Feedbacks Estimated From 35-Year (1980–2014) CAM5 and Reanalysis

The Arctic local feedbacks are calculated for SW, LW, and NET radiative fluxes. The red dots in Figure 1 show
the estimates of feedbacks based on 35-year (1980–2014) CAM5, ERA-Interim, JRA-55, and MERRA data sets.
Table S3 in the supporting information presents the values of red dots in Figure 1. As the most straightfor-
ward climate feedback, the Planck feedback is essentially indistinguishable among the four data sets, with
very small uncertainty. The coefficient of determination (R2) nearly equals 1 (see Table S3). While theWV feed-
back is weak in all four data sets, it is positive over the Arctic, and its magnitude is comparable between the
SW and LW. Among the NET feedbacks, the albedo and LR feedbacks are comparable. Net cloud feedback is
negative in the three reanalysis data sets when calculated with both the adjustment and residual methods
(described in section 2.3). In contrast, the net cloud feedback is close to zero in CAM5, mainly resulting from
the difference of SW cloud feedback between CAM5 and reanalysis results. The R2 for LR, albedo, and WV
feedbacks are larger than 0.5. However, the correlation between ΔRcloud and ΔSAT is weak, especially for
CAM5 (R2 is almost zero), indicating that factors other than SAT are more important in regulating ΔRcloud.
Like the cloud feedback, the total feedback also has large spread among the four data sets. The total net feed-
back is negative in all three reanalysis data sets, which is expected for a system at equilibrium (ΔR + ΔH = 0;
see section 2.2). However, like the net cloud feedback, the total net feedback in CAM5 is also close to zero due
to the larger SW total feedback relative to the reanalysis results.

3.2. Arctic Feedbacks Based on CAM5 and Reanalysis Combined With CERES Measurements

There has been considerable debate about net cloud feedback in the Arctic. Using the CMIP5 multimodel fra-
mework but different methods, Zelinka et al. (2013) reported a negative cloud feedback in the Arctic, while
Pithan and Mauritsen (2014) showed a slightly positive ensemble mean with disagreement on the sign
among individual models. Using surface observations, Eastman and Warren (2010a, 2010b) showed that
cloud changes appear to enhance the Arctic warming. Meteorological fields (α, T, and q) from reanalysis com-
bined with satellite radiative flux measurements at the TOA provide an effective way to estimate the cloud
feedback (Dessler, 2010, 2013). Here we examine how the CERES products combined with CAM5 and reana-
lysis data sets impact the estimate of Arctic feedbacks. We first repeat the feedback calculations for the period
(March 2000 to December 2014) when model/reanalysis overlaps with CERES products to facilitate the com-
parison later. Results from the 15-year analysis are marked with blue dots in Figure 1 and the values in Table S4.
Comparing to the 35-year results, except for the Planck feedback, estimates of other feedbacks have discern-
able differences along with an increase in uncertainty in all four data sets, especially in CAM5. In particular,
the total and cloud feedbacks have large differences between the 35-year and 15-year calculations. The
increased uncertainty in cloud feedback is mostly associated with its SW component (e.g., Vial et al., 2013).
Interestingly, the net total and cloud feedbacks derived from the 15-year CAM5 simulation become
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consistent in sign with the reanalysis results due to the dramatic change in the SW component. Meanwhile,
the SW total feedback in MERRA results also changed dramatically. The sensitivity of cloud (and total)
feedbacks to the length of data sets being used in the analysis reflects the impact of internal climate
variability on the feedback estimation using short-term data sets (Armour et al., 2013; Dalton & Shell,
2013). Next, we will discuss how the inclusion of satellite measurements in the data sets affects the
feedback estimation.

We repeat the 15-year feedback calculations to incorporate satellite measurements, that is, using the radia-
tive fluxes at the TOA from CERES to replace the corresponding fluxes in CAM5 or reanalysis. Results are com-
pared in Figure 2, where blue dots are replotted from Figure 1 to facilitate the comparison and red dots
denote the feedbacks from CAM5 or reanalysis combined with CERES for both all-sky and clear-sky TOA radia-
tive fluxes. The green dots represent similar calculations to the red dots but only with CERES all-sky fluxes
incorporated. The numerical values for red and green dots in Figure 2 are documented in Tables S5 and S6,
respectively. According to the methodology described in section 2.3, the LR, albedo, and WV feedbacks are
independent of the radiative flux changes at the TOA. Therefore, only the total and cloud feedback differs from
each other over the same period.

The difference of CERES-based total feedback (red or green dots) among the four data sets indicates that the
total feedback calculation is sensitive to the SAT choices because they use the same all-sky CERES fluxes.
While the CERES-based total feedbacks have the same signs with the blue-dot cases in the SW and LW com-
ponents, respectively, the signs of net total feedbacks become positive after using CERES fluxes as a result of
larger positive SW total feedbacks. We will further discuss this issue in section 3.3. The residual method for

Figure 1. Local individual radiative feedbacks (W · m�2 · K�1) at the TOA over the Arctic. The black error bar represents the
uncertainty of each feedback. The black cross symbol indicates an insignificance at the 95% confidence level. The red dots
and blue dots use data sets during January 1980 to December 2014 and March 2000 to December 2014, respectively.
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cloud feedback calculation described in section 2.3 does not require clear-sky TOA fluxes (Rclear � sky), so the
cloud feedbacks (residual) are identical between red dots and green dots in Figure 2. Owing to smaller LR and
albedo feedbacks, the net cloud feedback (residual) has a markedly positive value in MERRA and CERES
results relative to other data sets. This is a weakness of the residual method because the cloud feedback is
not computed directly (Soden & Held, 2006), so the adjustment method is recommended (Soden et al., 2008).

To further diagnose the impact of Rclear � sky on the cloud feedback calculation, we can compare the cloud
feedback derived from the adjustment method between red dots and green dots in Figure 2. Using
Rclear � sky from CAM5 or reanalysis can produce a wide spread in cloud feedbacks among the four data sets
(green dots). Compared to the green-dot cases, the dramatic change is the sign of SW cloud feedback, from
positive to negative, when both Rall � sky and Rclear � sky from CERES are included in the calculation (red dots).
It is no surprise that cloud feedbacks tend to be consistent and have a smaller spread among the four data
sets when more satellite measurements are included in the calculation. However, the net cloud feedbacks
(red dots) are still not significant at the 95% confidence level.

3.3. Comparison of Feedbacks Between the Arctic and Tropics

Tomaximize the use of latest data sets and expand our vision to the global scale, we calculate feedbacks from
the zonal-mean perspective using 18-year (March 2000 to September 2017) data sets for three cases: reana-
lysis (ERA-Interim, JRA-55, and MERRA-2), reanalysis combined with all-sky CERES (using all-sky CERES fluxes
to replace the corresponding fluxes in the reanalysis), and reanalysis combined with all-sky and clear-sky
CERES (using both all-sky and clear-sky CERES fluxes to replace the corresponding fluxes in the reanalysis).

Figure 2. Same as Figure 1 but both all-sky and clear-sky radiative fluxes at the TOA (red dots) and all-sky radiative fluxes at
the TOA (green dots) use CERES EBAF-TOA Ed4.0 products instead of model/reanalysis results. The blue dots are replotted
from Figure 1 for comparison. Data sets used in the calculations are for the period of March 2000 to December 2014.
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Figures S2a–S2i show zonal-mean feedbacks calculated via the regression onto zonal-mean SAT anomalies.
The meridional distribution of Planck feedback is nearly the same in all three data sets. The LR feedback is
positive at extratropical latitudes where the LR is constrained by baroclinic adjustment, but negative
where the temperature profile is close to a moist adiabat (Bony et al., 2006). As expected from the
distribution of snow and ice, the albedo feedback is focused on the high latitudes (Hall, 2004). The WV
feedback is positive over all latitudes, stronger in the tropics where moisture changes are stronger (Held &
Soden, 2000), and dominated by its LW component. Owing to complex interactions among clouds of
different thicknesses, heights, and optical properties (e.g., Bony et al., 2015; Zelinka & Hartmann, 2012;
Zhou et al., 2013), cloud feedback (calculated using the adjustment method) is more complex than other
feedbacks and has larger spread among the three data sets (Figure S2g) mainly from its SW component
(Figure S3a). The meridional distribution pattern of cloud feedback is opposite between its SW and LW
component (Figure S3), indicating a large disagreement of cloud fields between the different reanalysis
data sets. The cloud feedback is more consistent among the three data sets when more CERES products
are used in the calculation (Figures S2h and S2i). This indicates that the choice of data sets for
meteorological fields (α, T, and q) has a small impact on the inferred cloud feedback, which mainly
depends on the CRF (i.e., CRF = Rall � sky � Rclear � sky). Figure S4 further diagnoses the impact of
Rclear � sky on the cloud feedback estimates. Rclear � sky from CERES does have significant influences on
the inferred cloud feedback, especially its SW component (Figure S4a). This significant difference might be due
to CERES Rclear � sky only sampling the sky without clouds (Loeb et al., 2018). In Figure 2, the CERES-based net total
feedback is positive. We replot Figure 2 but using the 18-year data sets (see Figure S5), where the net total
feedback is close to zero, even with a negative value in MERRA-2 results (�0.03 W · m�2 · K�1).
Zonal mean net total feedback calculated with the CERES fluxes does increase at almost all latitudes (see
Figure S7) due to the increase in its SW component, but almost all net total feedbacks are negative. The
comparison between Figures 2 and S5 once again reflects the impact of internal climate variability on
the feedback estimation. Another possible reason for positive net total feedback is related to the term
ΔQ/ΔTs (Figure S6) that was derived from a different data set (see section 2.3).

As shown in Figure S2a, Planck feedback is the most fundamental quantity. From a local perspective on feed-
back definition, we can treat the global mean Planck feedback as the reference response, and then calculate
the local deviation of Planck feedback from its global mean. Based on the zonal-mean feedbacks, we further
make a scatter plot for regional feedbacks between the Arctic and the tropics (30°S–30°N) to explore themain
contributor to AA relative to the tropics (see Figure 3a). The values for variables in Figure 3a are in Tables S7–S9.
Except for the uncertain cloud feedback, all feedbacks (including the Planck feedback deviation) are positive
over the Arctic. The Planck feedback deviation, albedo, and LR feedbacks all contribute to AA, relative to the
tropics (above the 1:1 line in Figure 3a). The magnitudes of LR and albedo feedbacks are comparable, but
the LR feedback is the largest contributor to AA among these feedbacks, followed by the albedo feedback
and Planck feedback deviation according to their distance to the 1:1 line. This ranking is the same as the results
derived from the CESM large-ensemble simulations (purple symbols in Figure 3a) in Pendergrass et al. (2018)
and the CMIP5multimodel ensemblemean in Pithan andMauritsen (2014). The sign of LW cloud feedback over
the Arctic is positive and consistent among three cases (Figure S3g), but the sign for SW cloud feedback is
uncertain. As a result, the sign of net cloud feedback over the Arctic in Figure 3a is uncertain and strongly
depends on the data used for all-sky and clear-sky radiative fluxes at the TOA. Compared to the Arctic, the sign
of cloud feedback over the tropics is more uncertain, even for its LW component (Figure S3g).

4. Discussion and Summary

Although we focus on the feedbacks over the Arctic in this study, a closely relevant topic is the change in glo-
bal and annual mean SAT when accounting for the various feedbacks affecting the global climate, that is, the
climate sensitivity (IPCC, 2013). Meanwhile, it is also interesting to further evaluate our analysis on a global
scale. For these purposes, we compare global-mean feedbacks calculated from the short-term data sets with
other results derived from long-term coupled simulations (Block & Mauritsen, 2013; Pendergrass et al., 2018;
Soden et al., 2008; Vial et al., 2013) in Figure 3b. The short-term results are comparable to the long-term ones
except for the cloud feedback. The global mean cloud feedback is negative in two of the three cases using
reanalysis only (see Figure S8), resulting in a mean value close to zero. When incorporating the CERES fluxes,
global mean cloud feedbacks become positive and consistent with other studies. As shown in Figures 1, 2
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and S5, the feedbacks estimated from the short-term climate variations are sensitive to the time periods
considered because they are influenced by not only external forcing but also natural variability. Figure S9
shows the results derived from 38-year (1980–2017) reanalysis data sets. The relatively stable feature
(Figure S9j) is that the relative importance of individual contributors to AA is the same as that in Figure 3a.
However, except for the Planck and albedo feedbacks, there are larger differences at low latitudes than at
high latitudes between the 38-year and 18-year results, especially for the cloud feedback (see Figure S10).
Comparing to the 18-year results in Figures 3b and S8, except for the global mean Planck feedback, all
feedbacks derived from 38-year reanalysis data sets have discernable differences, especially the WV and
cloud feedbacks (see Figures S11 and S12). This also indicates that one should be cautious about using
short-term climate feedbacks to constrain long-term climate sensitivity.

In summary, we investigate the local short-term feedbacks (including Planck, LR, surface albedo, WV, and
cloud feedbacks) over the Arctic (60–90°N) from model/reanalysis data sets and observations using the com-
bined Kernel-Gregory method. We diagnose the impact of data set choice on the feedback estimates for the
shortwave, longwave, and net radiation. The inferred cloud feedback using the adjustment method mainly
depends on the CRF (i.e., the all-sky minus the clear-sky TOA irradiance), while the choice of data sets for
meteorological fields (albedo α, temperature T, and moisture q) has a small impact. The results presented
here show that all feedbacks are positive over the Arctic except for the uncertain cloud feedback. Both short-
wave and longwave WV feedbacks are positive, leading to a significantly positive net WV feedback. The mag-
nitudes of LR and albedo feedbacks are comparable. Relative to the tropics (30°S–30°N), the LR feedback is
the largest contributor to AA, followed by the albedo feedback and Planck feedback deviation from its global
mean. The WV feedback, however, has a negative contribution to AA relative to the tropics. Our analysis
further confirms that the cloud feedback has the largest uncertainty, including its sign, which strongly

Figure 3. (a) Scatter plot of individual feedbacks (W · m�2 · K�1) over the tropics and the Arctic. (b) Comparison of
global-mean radiative feedbacks at the TOA (W · m�2 · K�1). Detailed values are summarized in Table S10. The legends of
colors and symbols for panel (a) and (b) are shown on the right-hand side of the corresponding panel. The reanalysis and
CERES data sets used in both panels are for the period of March 2000 to September 2017.
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depends on the data set used for all-sky and clear-sky radiative fluxes at the TOA, the time period considered,
and the method used to estimate the cloud feedback. Most of the uncertainty in cloud feedback is from its
shortwave component. Our best estimates (mean of three data sets in Figure 3a) for Planck feedback devia-
tion, LR, albedo, and net WV feedbacks over the Arctic are 0.54 ± 0.03, 1.34 ± 0.2, 1.33 ± 0.32, and
0.26 ± 0.1 W · m�2 · K�1, respectively. Unfortunately, we are not confident to give an estimation for the net
cloud feedback based on the current analysis, even its sign. Note that we have used the radiative kernels
derived from CESM/CAM5 (Pendergrass et al., 2018) in the feedback calculations, which might introduce
uncertainty to the results of each reanalysis data set. This warrants a future study to use radiative kernels
derived from respective reanalysis background states to reexamine these feedbacks, especially cloud feed-
back in the Arctic.
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